首页> 外文OA文献 >Reinforcement Learning in Multidimensional Environments Relies on Attention Mechanisms
【2h】

Reinforcement Learning in Multidimensional Environments Relies on Attention Mechanisms

机译:多维环境中的强化学习依赖于注意机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, ideas from the computational field of reinforcement learning have revolutionized the study of learning in the brain, famously providing new, precise theories of how dopamine affects learning in the basal ganglia. However, reinforcement learning algorithms are notorious for not scaling well to multidimensional environments, as is required for real-world learning. We hypothesized that the brain naturally reduces the dimensionality of real-world problems to only those dimensions that are relevant to predicting reward, and conducted an experiment to assess by what algorithms and with what neural mechanisms this “representation learning” process is realized in humans. Our results suggest that a bilateral attentional control network comprising the intraparietal sulcus, precuneus, and dorsolateral prefrontal cortex is involved in selecting what dimensions are relevant to the task at hand, effectively updating the task representation through trial and error. In this way, cortical attention mechanisms interact with learning in the basal ganglia to solve the “curse of dimensionality” in reinforcement learning.
机译:近年来,来自强化学习的计算领域的思想彻底改变了大脑的学习方法,著名地提供了有关多巴胺如何影响基底神经节学习的新的精确理论。然而,众所周知,强化学习算法无法很好地适应多维环境,这是现实世界学习所必需的。我们假设大脑自然地将现实世界中的问题的维度减少到仅与预测奖励有关的那些维度,并进行了一项实验,以评估该“表示学习”过程是通过哪种算法和何种神经机制在人类中实现的。我们的结果表明,包括顶壁沟,前突神经和背外侧前额叶皮层的双边注意力控制网络参与选择与手头任务相关的尺寸,通过反复试验有效地更新任务表示。通过这种方式,皮质注意机制与基底神经节中的学习相互作用,以解决强化学习中的“维数诅咒”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号